

Code Crafting Essentials

Using Python for Success

Mason Pryor • mason.pryor@shawneelodge.org

Meet Your Trainer

- Shawnee Lodge #51
- O'Fallon, MO

Mason Pryor

Learning Objectives

1. Learn the basics of Python

- a. Data types and variables
- b. Basic operators and functions
- c. Input & output
- d. Using a dataframe and JSON files

2. Understand the resources available to teams in creating their Hackathon solutions

1. Getting Started

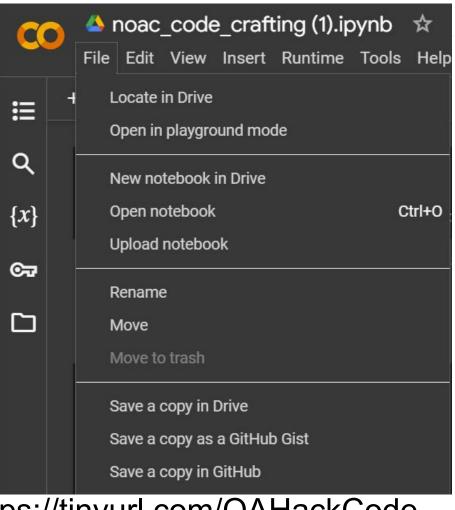
IDEs, Google Colab, Replit

Integrated Development Environment

- Also known as an IDE
- Contains various development tools:
 - Text Editor
 - Compiler
 - Debugger
 - Terminal
 - Version control
- Online IDEs
 - replit.com, Google Colab

Google Colab

- Hosts Jupyter Notebooks
- Project Jupyter
- Non-profit, Open Source
- Interactive Data Science and Scientific Computing



Copy Sample Code

- 1. Open Google Colab
- 2. Open our sample code
- 3. Save a copy in Drive

https://tinyurl.com/OAHackCode

Copy Sample Code

- 1. Open Google Colab
- 2. Open our sample code
- 3. Save a copy in Drive

00	📣 noac_code_crafting (1).ipynk						☆			
	File	Edit	View	Insert	Runtime	Tools	Help			
≣∟			n Drive playgro	ound mod	je					
۹	New notebook in Drive									
{ <i>X</i> }	c)pen no	otebook			С	trl+0			
~	L	Jpload	noteboo	ok						
ଙ୍କ	F	Rename	:							
	N	<i>l</i> love								
	N	/love to	trash							
	s	Save a d	copy in I	Drive						
	s	Save a c	opy as	a GitHub	o Gist					
	s	save a c	copy in (GitHub						

https://drive.google.com/drive/folders/1j5aaM427v8n z3sHn3vYlv_v2KeaC6FTn?usp=drive_link

2. The Basics

Syntax, Data Types, Operators, I/O, etc.

Sample Print Statement

EX1: Here is an example Print statement concatenated with a String variable

training = "Code Crafting"

print("Hello World! Welcome to ", training)

Hello World! Welcome to Code Crafting

Data Types

Numeric

- Integer
- Float

#Numeric
num1 = 34 #Integer
num2 = 3.0101 #Float

Data Types

- Sequence
 - String
 - List
 - Tuple

```
#Sequence
words = "Welcome to NOAC!" #String
list1 = [1,2,3] #List/array, contents can be changed
tup = (1, 2, 3) #tuple, contents cannot be changed after initialization
```


Data Types

- Mapping
 - Dictionary

#Mapping
dictionary = {"name": "Scout", "rank": "Star"} #Stores data in value pairs

Calculations & Operators

Addition + Subtraction -Multiplication * Division / Exponent ** Modulus (remainder) % Floor Division //

You can use multiple numeric data types in an equation


```
x = 5
y = 3
pi = 3.14
#Addition & Subtraction + -
addXY = x+y
print("Addition:", addXY)
subXY = x - y
print("Subtraction:", subXY)
#Multiplication & Division * /
multXY = x*y
print("Multiplication:", multXY)
divXY = x/y
print("Division:", divXY)
Addition: 8
```

```
Addition: 8
Subtraction: 2
Multiplication: 15
Division: 1.666666666666666666
```


#Exponent **		x = 5
powerXY = x**y		y = 3
<pre>print("Exponent:", powerXY)</pre>		pi = 3.14
#Modulus % (remainder)		
modXY = x%y		
<pre>print("Modulus:", modXY)</pre>		
#Floor Division //		
<pre>floorXY = x//y</pre>		
<pre>print("Floor Division:", floorXY)</pre>		
#Using Different Data Types		
<pre>print("You can use math operators across numeric data</pre>	types:", x, "+	", pi, "=", x+pi)
Exponent: 125		
Modulus: 2		
Floor Division: 1		
You can use math operators across numeric data types:	5 + 3.14 = 8.14	4

User Input

user_num = input("Enter a number:")
user_name = input("Enter your name:")

Enter a number: 123 Enter your name: Joe

Conditionals & Code Blocks

<mark>==</mark> equal to

- <mark>!=</mark> not equal to
- <mark><</mark> less than
- <= less than or equal to
- <mark>></mark> greater than
- >= greater than or equal to

```
num1 = 5
num2 = 19
if num1 < num2:
    print(num1, "is a small number")
elif num1 > num2:
    print(num1, "is a big number")
else:
    print(num1, "is equal to num2!")
letters = ['a', 'b', 'c']
if 'a' in letters:
   print("a is in the list")
else:
    print("a is not in the list")
5 is a small number
a is in the list
```


Conditionals

is tests if two objects are the same

is not tests if two values are not the same object

in tests if a value is in a sequence

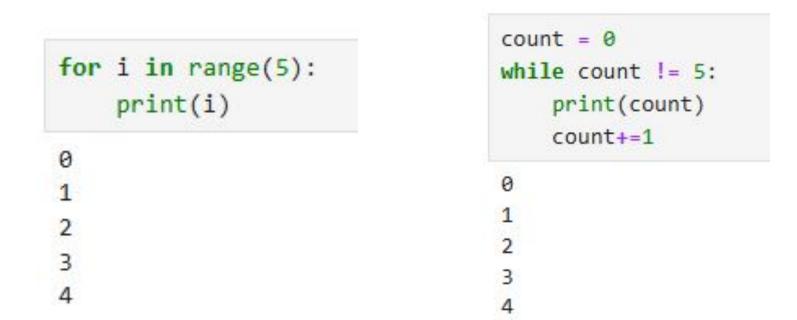
not in tests if a value is not in a sequence

```
num1 = 5
num2 = 19
if num1 < num2:
    print(num1, "is a small number")
elif num1 > num2:
    print(num1, "is a big number")
else:
    print(num1, "is equal to num2!")
letters = ['a', 'b', 'c']
if 'a' in letters:
    print("a is in the list")
else:
    print("a is not in the list")
5 is a small number
a is in the list
```


Loops

For loops iterate over a sequence

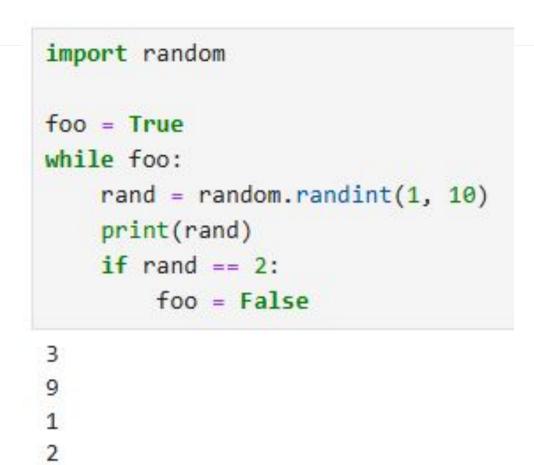
While loops run while a condition is <u>true</u>


<pre>states = ["Colorado",</pre>	"Missouri",	"Arkansas",	"Texas",	"Florida"]
<pre>for state in states: print(state)</pre>				
Colorado				
Missouri				
Arkansas				
Texas				
Florida				

Loops

For loops iterate over a sequence

While loops run while a condition is true



Loops

For loops iterate over a sequence

While loops run while a condition is <u>true</u>

Libraries

Collections of pre-written code for common tasks

Python supplies a list of it's own libraries which includes math, datetime, os, sys, random, json, re (RegEx), and more.

There are also various third-party libraries that can be added to a program.

For the purposes of future examples, we use Pandas, a data manipulation and analysis library using dataframes and matplotlib, which helps create visuals within python. We also use JSON from the standard library.

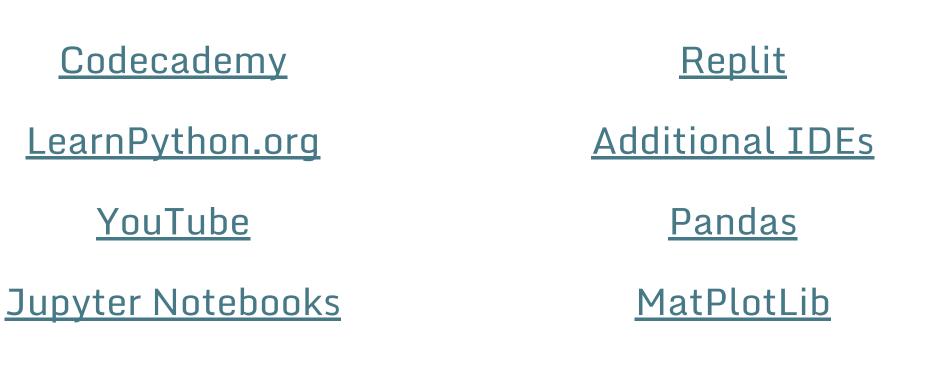
3. Example

2024 National Order of the Arrow Conference

University of Colorado Boulder • July 29 - August 3, 2024

Broad Hackathon Problem Statement

How do we leverage technology to support the OA?



4. Resources

Thanks for Joining!

It's your turn!

What can your team create?

Ascent Code

N-NN484991

Mason Pryor • mason.pryor@shawneelodge.org

Thank you!

Please take a moment to fill out the feedback form.

mason.pryor@shawneelodge.org

